منابع مشابه
Descent for Non-archimedean Analytic Spaces
In the theory of schemes, faithfully flat descent is a very powerful tool. One wants a descent theory not only for quasi-coherent sheaves and morphisms of schemes (which is rather elementary), but also for geometric objects and properties of morphisms between them. In rigid-analytic geometry, descent theory for coherent sheaves was worked out by Bosch and Görtz [BG, 3.1] under some quasi-compac...
متن کاملTropical varieties for non-archimedean analytic spaces
For the whole paper, K denotes an algebraically closed field endowed with a nontrivial non-archimedean complete absolute value | |. The corresponding valuation is v := − log | | with value group Γ := v(K). The valuation ring is denoted by K. Note that the residue field K̃ is algebraically closed. In Theorem 1.3, §8 and in the second part of §9, we start with a field K endowed with a discrete val...
متن کاملNon-Archimedean analytic curves in Abelian varieties
One of the main subtleties of non-Archimedean analysis is that the natural topology that one puts on non-Archimedean analytic spaces is totally disconnected, meaning that there is a base for the topology consisting of sets which are both open and closed. This makes it difficult, for instance, to define a good notion of analytic function so that one has analytic continuation properties. Of cours...
متن کاملTropical Dolbeault Cohomology of Non-archimedean Spaces
In this survey article, we discuss some recent progress on tropical Dolbeault cohomology of varieties over non-Archimedean fields, a new cohomology theory based on real forms defined by Chambert-Loir and Ducros.
متن کاملNon-archimedean Analytification of Algebraic Spaces
1.1. Motivation. This paper is largely concerned with constructing quotients by étale equivalence relations. We are inspired by questions in classical rigid geometry, but to give satisfactory answers in that category we have to first solve quotient problems within the framework of Berkovich’s k-analytic spaces. One source of motivation is the relationship between algebraic spaces and analytic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica
سال: 2017
ISSN: 1022-1824,1420-9020
DOI: 10.1007/s00029-017-0310-1